目前电力系统中应用最多,最为成熟的FACTS设备就是静止无功补偿器 (Static Var compensation, SVC)。它通常由负荷并联的电抗器和(或)电容器组合而成,且其中歪歪有一个可调的。可调电抗器包括晶 闸管控制的电抗器(TCR)或晶闸管投切的电抗器(TSR)两种形式。电容器则通常包括与谐波滤波器电路结合成一体的固定的电容器(FC) 或机械投切的电容器(MSC),或在需对电容进行高速或非常频繁投切时所采用的晶闸管的手段。以日本为例,截止2001年底,共生产了264 台容量高达9018Mva的并联无功补偿器,其中92%以上为基

光伏电站无功补偿容量选择

静止同步补偿器作为基于电压源变流器的并联补偿装置,其概念自 20世纪80年代一经提出立刻得到了各大电器制造公司的广泛关注,纷纷投入巨大的资金和人力进行开发,但由于当时电力电子技术发展的限 制一直没有正式的样机投入运行。20世纪90年代高压大功率可关断器件的迅速发展从硬件上为作为电力系统一次回路设备的大功率STATCOM 的开发提供了可能,1992年日本三菱公司研制的世界第一台±80Mvar的工业装置于日本犬山投入商业运行,开创了基于同步变流器装置的 FACTS技术的新纪元,随后各大公司纷纷推出自己的产品。我国清华大学和河南省电力局合作研制的±20MvarSTATCOM也于1998年投入运行。 到目前为止,已有数十台装置投入到了商业运行,是新一代FACTS装置中最早,也是得到最广泛应用的同步补偿装置。

有源电力滤波器(Active power filter,APF)的交流电 路分为电压型和电流型。目前实用的装置90%以上为电压型。从与补偿对象的连接方式来看,有源电力滤波器可分为并联型和串联型。并联 型中有单独投入电网使用、LC滤波器混合使用以及注入电路方式,目前并联型占实用装置的大多数。目前有源电力滤波器仍存在一些问题, 如电流中有高次谐波、单台容量低、成本较高等。随着电力半导体器件向大容量、高频化方向发展,这种既能无功补偿又能谐波治理的装置 必然会有很好的发展前景。本论文就详细地介绍了其中的一种。

对于大负荷用电企业,按照无功补偿的种类又分为高压集中补偿,低压集中补偿和低压就地补偿。在补偿容量相等的情况下,低压 就地补偿减低线损最有效,其原因是这种方法就地补偿了负荷的感性部分,使流经线路和变压器上的无功电流大大减小,显然此种方法所取 得的经济效益最佳。

近年来,随着我国医疗卫生事业的发展和医疗体制改革的 推动,全国卫生机构总规模和服务质量追念提高。随着医疗条件的改善,医院病房、门诊急诊、输液、科研试验各大楼普遍使用了中央空调 系统,病人看病的环境更加舒适,这也带动了电力需求的增长,使医院的用电量比以前翻番,医院已成为城市用电大户之一。与此同时,谐 波、三相不平衡等一系列电能质量问题随之而来,带来的用电安全隐患极大。

光伏电站无功补偿容量选择

(2)信号线采用屏蔽线,且布线时与变频器主回路控制线错开一定距离(至少20cm以上),切断辐射干扰。

由于矿热炉比其它电冶炼炉的电阻弱,故其功率因数相应地也降低些。除了一般小型矿热炉的自然功率 因数能达到0.9以上,而容量在 10000KVA以上的中、大型矿热炉的自然功率因数都在0.9以下,矿热炉容量越大,功率因数越低。这是由于大 容量矿热炉的变压器感性负载 越大,短网越长,电极插入炉料较深增加了短网的电抗,因而降低了矿热炉的功率因数。

此技术属于将原来成熟的就地补偿技术应用到矿热炉的二次低压侧,由电容器产生的无功功率 ,通过短线路,一部分通过矿热炉变压器 由系统吸收,另一部分补偿矿热炉变压器,短网和电极的无功损失,增加了输入矿热炉的有功功率 。同时采用了分相补偿,使矿热炉内三相 电极上的有功功率相等,达到提高功率因数,减小三相功率不平衡和改善生产指标的效果。

中频冶炼炉在冶炼、铸造等行业中应用日益广泛,但中频炉在工作时采用整 流和逆变技术,产生了大量电流、电压谐波。谐波对供电系 统造成严重污染,使得精密仪器工作过程中产生误动作,增加供电设备的损耗。

3.谐波会引 起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁;

光伏电站无功补偿容量选择

配电系统中的大量负荷,如异 步电动机、感应电炉以及大容量整流设备等,在运行中都表现为感性,在实现有功电能转换的同时,也会 消耗大量的无功;同时,输配电网 络中的变压器、线路等的阻抗也表现为感性,在流过电流的时候也会消耗无功,导致系统功率因数降低。 对于系统而言,负荷的低功率因数 ,会增加供电线路上的电能损失和电压损失,降低了电压质量,同时,无功电流也会降低发、输、供电设 备的有效利用率;对于电力用户而 言,低功率因数会增加电费支出,加大生产成本。

(2)抑制电压波动和闪变