6、可减少电容器组的涌流,有利于接触器灭弧,降低操作过电压的幅值。

负载太小无功补偿不起用

调谐设计是实现电容电抗支路在某次谐波谐振点附近出现低阻抗,让该次谐波流经该支路,根据用途不同,有低通、高通 、C型滤波器等 多种常见设计方案,其目标是滤除特定次谐波。失谐设计是实现电容电抗支路对系统中出现的谐波电流的谐振点呈现高阻抗, 从而使谐波不 流经该支路,其目标是确保无功补偿支路自身的安全和提供无功功率补偿。无源滤波设备在保证目标功率因数的前提下,无需 更多分级,否 则不仅会增加成本,还会增加谐振点。

无源滤波设备适用于大多数谐波治理场合,它具有功耗低、造价低、设备稳定可靠等突出优点,是大功率工 业场合的首选。

3、消灭系统的一个安全隐患点,使安全防 护升级;

随着电力电子技术的发展和广泛应用,电力系统中非线性负载日益增多,如整流器、变频器、UPS、家用电器及 计算机等。这些非线性负 载会产生谐波电流并注入到电网中,使电网中的电压波形产生畸变,从而造成电网的谐波“污染”。另外,冲击性 、波动性负载,如电弧炉 、焊接设备等,在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重,危害电网 的安全运行。

负载太小无功补偿不起用

当电网电压或电流中含有谐波时,如何定义各种功率是一个至今尚未得到圆 满解决的问题,这是一个关系到电量计算、分析及控制的重 要问题。如何使定义科学严谨,又能满足各种工程和管理的需要,还有许多问题 需要研究。传统的平均功率理论在系统存在谐波时不能完全 使用,容易造成诸如电能计量变差等问题。本文就针对有源电力滤波器APF而提出 的瞬时无功功率理论,该理论是解决谐波相关问题使用得 最为广泛的功率理论,当然该理论也并不是非常完美,也存在一点的问题,本论文 就提出了一种改进的瞬时无功功率理论。

改善电压调节。负载对无功需 求的变化,会引起供电点电压的变化,对这种变化若从电源端(发电厂)进行调节,会引起一些问题,而 补偿设备就起着维持供电电压在规 定范围内的重要作用。

电网输出的 功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功 ,这部分功率称 为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能是电气设备能够作功的必备条件,并且,这种能是在电 网中与电能进行 周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中 作功时,电流超前 于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃. 如果在电磁元件电 路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能 力,这就是无功补 偿的道理。

由于有源电力滤波器的价钱高,为降低补偿安装的投资,主要方法就是降低有源电力滤波器的容量。目前的主要 思路是将有源电力滤波 器和无源滤波器混合运用,用无源滤波器滤除谐波源中主要的谐波电流,用有源电力滤波器来进步总体的补偿效果, 这就是混合型有源电力 滤波器。有源电力滤波器自身除能补偿谐波外,经过在控制电路上加以改造还能够补偿基波无功、电压闪变以及电压 的不均衡等功用。

灵敏的补偿方式 一机多能,不只能管理谐波,而且能补偿 无功、进步功率因数。既可对单个谐波源独立补偿,也可对多个谐波源集中补 偿。管理谐波时还可完成对指定次谐波停止管理。

负载太小无功补偿不起用

为减少变压器台数,单台变压器的容量选择一般都大于1000kVA.为限制低压侧的短路电流,正常时变压器解列运行,中间设联络开 关。 照明和动力分开设变压器,当动力用电容量太小时,动力变压器可不分开装设,而在低压侧应对动力负荷分类计费。

低压无功补偿装置采用智能低压电子复合开关作为开关元件,彻底解决了电容器投入时的浪涌电流问题,无触头 烧损之虑,无需散热, 更不会产生谐波注入,安全可靠性高。