跟踪补偿:是指以无功补偿投切装置作为控制保护装置, 将低压电容器组补偿在大用户0.4KV母线上的补偿方式。适用于100K V A以上的 专用配变用户, 可以替代随机、随器两种补偿方式,补偿效 果好。

电容器无功补偿动态静态

滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电 解电容,利用其充放电特性,使 整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化 而产生变化,所以在电源的输出 端及负载的电源输入端一般接有数十至数百微法的电解电容。

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此 ,容易使电脑死机;高次谐波会在中性线上叠加,中性线电 流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机 屏幕的频闪现象;由于开关、短路以及负载变化而引起的短 时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸 变会引起在一个正弦周波内的额外过零点,影响测试设备, 干扰程序控制装置的同步性,导致控制装置死机。

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正 弦电流大,电 弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装 置动作的设定 值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电 气设 备产生干扰;尤其是在高精度仪器|仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离 、 滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。

电容器无功补偿动态静态

谐波问题由来已久,近年来这 一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛 使用变频器等电力电子装置,使得 与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量 增加使用电容器组,并联电容器以 谐振的方式加重了谐波的危害。

(3)变频器使用专用接 地线,且用粗短线接地,邻近其他电器设备的地线必须与变频器配线分开,使用短线。这样能有效抑制电流谐波对 邻近设备的辐射干扰。

低压补偿是 利用现代控制技术和短网技术将大容量、大电流的超低压电力电容接入矿热炉的二次侧的无功补偿装置。该装置不仅是无功 补偿装置原理的 最好体现,还可以使矿热炉的功率因数在较高值运行,降低短网和一次侧的无功消耗,消除3次、5次、7次谐波。调平三相 功率,提高变压器 的输出能力。控制的重点使三相功率不平衡度下降,达到三相功率相等。使坩锅扩大、热量集中,提高炉面温度,使反应 加快,达到提高产 品质量、降耗和增产的目的。

近几年了,由于低压补偿技术逐渐成熟,设计日趋完善,体积大为减少,矿热炉生产厂家,也认识到了其在提高矿热炉经济效益方面显现 的 突出性,低压补偿装置已在矿热炉变压器上大量应用。

中频感应炉的电源系统是电力系统中数量最大的谐波源,常见的为中频炉和高频感应炉电源等。一般6脉冲中频炉,主要产生5、7、 11、 13次特征谐波等;对于12脉冲换流中频炉,主要为11、13、23、25次特征谐波。一般情况下,小型换流装置采用6脉冲,较为大型采用12 脉 冲,如炉变压器接成Y/△/Y型,或者采用两台炉变压器供电。

电容器无功补偿动态静态

8.还有一种情况:有的用户中频炉在投运功率因数并不低,仅需治理谐波。

1. 采用谐波治理支路(5、7、11次滤波),中频炉运行是自动跟踪,谐波就地解决,生 产时不影响其他设备的运行,投入后谐波无功达到 标准。