②智能建筑中线缆密 布,系统设备繁多,微电子装备复杂,且防护能力弱,高次谐波将会使智能化系统设备产生误码、错码、误动作, 使信号系统受到污染、产 生噪声,甚至连通话质量都不能保证。随着低电压信号在IT设备中使用的增加,比特错误率也随之提高,甚至可以 高到使整个网络瘫痪。

无功补偿柜结构

⑥对于电力电缆和配电线路,谐波电流频率增高会引起明 显的集肤效应,导线电阻增大,线损加大,发热增加,绝缘过早老化,容易发 生接地短路故障,形成潜在的火灾隐患。在智能建筑中大量集 中使用电子计算机和大面积采用电子节能气体光源照明的场合,中性线电流甚 至达到相线电流的2倍,致使中性线过热、烧毁,甚至导致火灾 。

变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电 气设 备产生干扰;尤其是在高精度仪器|仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离 、 滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。

谐波问题由来已久,近年来这 一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛 使用变频器等电力电子装置,使得 与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量 增加使用电容器组,并联电容器以 谐振的方式加重了谐波的危害。

矿热炉是一种高能耗的电冶炼炉,具有电阻电弧炉的特性。其功率因数是由炉内电弧及电阻R和电源回路中(包括变压器、短网、集 电环 、导电颚板及电极)的电阻r和电抗x值的大小来决定。

无功补偿柜结构

低压补偿是 利用现代控制技术和短网技术将大容量、大电流的超低压电力电容接入矿热炉的二次侧的无功补偿装置。该装置不仅是无功 补偿装置原理的 最好体现,还可以使矿热炉的功率因数在较高值运行,降低短网和一次侧的无功消耗,消除3次、5次、7次谐波。调平三相 功率,提高变压器 的输出能力。控制的重点使三相功率不平衡度下降,达到三相功率相等。使坩锅扩大、热量集中,提高炉面温度,使反应 加快,达到提高产 品质量、降耗和增产的目的。

采用低压侧动态三相分补滤波补偿, 滤波装置投运后,使矿热炉内三相电极上 的有功功率相等,达到提高功率因数,减小三相功率不平衡 和改善生产指标的效果。

中频感应炉的电源系统是电力系统中数量最大的谐波源,常见的为中频炉和高频感应炉电源等。一般6脉冲中频炉,主要产生5、7、 11、 13次特征谐波等;对于12脉冲换流中频炉,主要为11、13、23、25次特征谐波。一般情况下,小型换流装置采用6脉冲,较为大型采用12 脉 冲,如炉变压器接成Y/△/Y型,或者采用两台炉变压器供电。

5.对于电力系统外部,谐波会对通信设备和电子设备产生严重干扰。

配电系统中的大量负荷,如异 步电动机、感应电炉以及大容量整流设备等,在运行中都表现为感性,在实现有功电能转换的同时,也会 消耗大量的无功;同时,输配电网 络中的变压器、线路等的阻抗也表现为感性,在流过电流的时候也会消耗无功,导致系统功率因数降低。 对于系统而言,负荷的低功率因数 ,会增加供电线路上的电能损失和电压损失,降低了电压质量,同时,无功电流也会降低发、输、供电设 备的有效利用率;对于电力用户而 言,低功率因数会增加电费支出,加大生产成本。

无功补偿柜结构

电压波动和闪变主要是由于负荷急剧变 动引起的。负荷的急剧变动使系统的电压损耗也应快速变化,从而使电气设备的端电压出现波动 现象。电压波动主要是由冲击性的非线性负 载的快速变化引起的,典型的非线性负载如电弧炉、轧钢机、电气化铁路等。当电压变化超过允 许值时,就不能满足用户对电压质量的要求 ,会导致设备运行性能不良,出现过电流、过热、保护装置误动作及设备烧坏等到事故,并且设 备性能、生产效率和产品质量都将受到影响 。其不良影响包括:影响产品质量、影响设备使用寿命、造成照明光通量的变化,总之,电压波 动和闪变对安全生产及人体健康都是极为不 利的。

对于负荷中心而言, 由于负载容量大,而又没有大型电源支撑,因此容易造成电压偏低甚至发生电压崩溃的稳定事故。而SVG具有的快速 调节无功的功能可以维持 负荷侧电压,提高负荷供电系统的电压稳定性。