该电路拓扑结构是在串联型有源滤波器的基础上使用一些大容量的无源L-C滤波网络来承担消除低次谐波,进行无功补偿的任务。而串联型有源滤波器只承担消除高次谐振及阻尼无源LC网络与线路阻抗产生的谐波谐振的任务。从而使串联型有源滤波器的电流、电压额定值大大减少(功率容量可减少到负载容量的5%以下),降低了有源滤波器的成本和体积。从经济角度而言,这种结构形式在目前是一种值得推荐的方案。其拓扑图如下所示:

主要应用场合有配有变频设备等类似负载的场合、配有不稳定负载的场合、轨道交通、石油化工、海洋石油、汽车制造、机械重工、污水处理、采矿冶炼、市政工程、电信银行、医院、智能建筑、会议中心、游乐中心、水泥、电子、造纸、橡胶、半导体、钢铁厂、有色金属冶炼、电气化铁路等。

改善系统不平衡状况可完全消除因谐波引起的系统不平衡,在设备容量许可的情况下,可根据用户设定补偿系统基波负序和零序不平衡分量并适度补偿无功功率。在确保滤除谐波功能的基础上有效改善系统不平衡状况。

有源滤波器apf用

安装电容器组前要实测电容器接入点(变电站)的谐波背景和收集负荷谐波情况,通过设计论证和计算,作为选择串联电抗器参数的依据。

在停电处理时用备品补齐,没有备品采用拆除相应的电容器来配齐各相间的电容量平衡,同时注意三点:(1)三相间,两个星形间(双Y接线时)的电容量应配置平衡;(2)各相的上下两段串联间的电容量平衡,否则两段电容器承受电压不同,电容量小的段电压可能超过电容器的额定电压;(3)电压可能超过标准持续运行允许的1.1倍额定电压,保护不会动作于跳闸,故障发生在上段或下段时,保护灵敏度也不同。

电容器完好状态下,发生熔断器不正常熔断,其原因是:熔丝质量不好或者热容量不够;连接时熔丝损伤,如轧伤,压伤等;使用铁质螺栓连接,因锈蚀接触不良;弹簧锈蚀,弹力不够;安装角度不符合要求,影响弹力。对策如下:

户外式电容器受天气及周围环境的影响,外壳,构架油漆容易脱落和生锈,同时,外壳,支持绝缘子和其他配件如不定期清扫会严重积尘,不利于电容器安全运行。因此要定期对设备进行维护,特别是周围环境不大好的更要重视。使之电容器外壳,构架以及其他设备保持油漆完好和良好的辐射表面,构架采用涂锌件,防止生锈。另外,户外式设备拟每季或半年清扫一次,但是要根据季节特点和周围环境做到勤清扫,如某变电站每年2次雾季前进行小水量边冲边揩,效果很好。/p>

与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰;电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。高次谐波的危害具体表现在以下几个方面:

(4)开关设备:由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。

(3)对于装设多台变频器的场合,可各配专用的变压器,利用输入变压器相位错开的方法抑制高次谐波。

有源滤波器apf用

电力系统中常会因为输送无功功率而造成电力系统无端的能源浪费,而对电网进行无功补偿是实现电能效率最大,保证电力系统运行安全,降低能源损耗的重要举措。除此之外,无功补偿也能在一定程度上治理谐波的污染,当然这需要谐波治理的相关设备一同进行配合才能事半功倍。同时,无功补偿能改善电力系统环境,提高用电质量。

对负载进行无功补偿先要究其缘由,找出造成无功功率产生的原因,然后计算无功需求量,最后安装无功补偿设备。无功功率的产生一般是因为电力部门所传送的三相电本身存在缺陷,也就是质量上并不过关;另外一个原因就是企业用电机械和住户用电设备的性能不高,导致无功功率不稳定的传送。无功功率是影响电力系统中电压的重要参考要素,而控制电压就是通过控制电力系统中的无功功率来实现的。