利用电力电子器件IGBT及其相关电路,对系统谐波源进行跟踪抵消补偿,即按系统的谐波分量发出一个大小相等方向相反的谐波分量,以抵消原谐波分量。主要检测补偿对象的电压和电流,经指令电流运算电路,计算得出补偿电流的指令信号,该信号经补偿电流发生电路放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波及无功等电流抵消,最终得到期望的电网电流。其工作原理如下图所示:

有源电力滤波器实现的功能,滤除电流谐波可以高效的滤除负荷电流中2~25次的各次谐波,从而使得配电网清洁高效,满足国标对配电网谐波的要求。该产品真正做到自适应跟踪补偿,可以自动识别负荷整体变化及负荷谐波含量的变化而迅速跟踪补偿,80us响应负荷变化,20ms实现完全跟踪补偿。

有源电力滤波器最终实现的目的:1、提高企业设备的供电质量,提供设备运行的可靠性,减少因设备误动作而造成的经济损失。2、降低用电设备发热,减少绝缘老化,从而提高设备的使用寿命,减少设备的维护费用。3、减少电容器的谐振几率,提高用电安全。4、减少谐波产生的电磁干扰,保障弱点系统正常工作。5、满足国家及地方标准要求,避免罚款。

有源滤波电路误差来源

电容器的电容量增大有两种情况:第一种是无内熔丝的电容器一旦发现电容量增大,即超过一个串联段击穿所引起的电容量增大,应立即退出运行;第二种是有内熔丝的电容器应考虑为一个元件击穿故障,相应的内熔丝没有熔断引起电容量增大的,要立即退出运行。总之,无论哪种情况都要立即退出运行,以防止电容器带故障运行而发展成扩大性故障。

电容器组在运行中继电保护误动或拒动,可能使保护的定值与实际不相符合,灵敏度过高容易误动,灵敏度过低容易拒动,另外,继电器存在问题对策如下:

户外式电容器受天气及周围环境的影响,外壳,构架油漆容易脱落和生锈,同时,外壳,支持绝缘子和其他配件如不定期清扫会严重积尘,不利于电容器安全运行。因此要定期对设备进行维护,特别是周围环境不大好的更要重视。使之电容器外壳,构架以及其他设备保持油漆完好和良好的辐射表面,构架采用涂锌件,防止生锈。另外,户外式设备拟每季或半年清扫一次,但是要根据季节特点和周围环境做到勤清扫,如某变电站每年2次雾季前进行小水量边冲边揩,效果很好。/p>

输入端谐波产生机理:变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6n±1次高次谐波,其中的高次谐波将干扰输入供电系统。如果出现电源侧电抗充分小、换流重叠角\"可以忽略强狂,那么n次高次谐波为基波电流的1/n。输出端谐波产生机理:在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形。对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含基波和其他高次谐波。

(2)感应电动机:电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。

另外,高次谐波还会对电脑、通信设备、电视及音响设备、载波遥控设备等产生干扰,使通信中断,产生杂讯,甚至发生误动作,另外还会对照明设备产生影响。

3、不管采用何种方法,都不可能完全解决高次谐波的污染问题,在实际工业生产中为消除变频器高次谐波对电气设备的干扰,主要从传导、辐射和耦合三个方面解决。总的原则是抑制和切断干扰源、切断干扰对系统的耦合通道和降低对干扰信号的敏感性。解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离掉,解决辐射干扰就是对辐射源或*扰的线路进行屏蔽,解决耦合干扰就是合理布置干扰源和被干扰线路的距离、走向,避免耦合产生。

有源滤波电路误差来源

电力系统中常会因为输送无功功率而造成电力系统无端的能源浪费,而对电网进行无功补偿是实现电能效率最大,保证电力系统运行安全,降低能源损耗的重要举措。除此之外,无功补偿也能在一定程度上治理谐波的污染,当然这需要谐波治理的相关设备一同进行配合才能事半功倍。同时,无功补偿能改善电力系统环境,提高用电质量。

最近有新闻报道,一家工厂在不加班无多耗的情况下,该月的电费竟多出了8000多元。分析原因,由于变电所到该厂配电房架空线或是高压电缆,线路较长,高压电缆或架空线与大地之间形成局部小电容,电容呈现容性,功率因数超过了1,也就是在不用电的基础上线路呈现容性,无功会反向倒送系统,这样增加了线路的损耗、抬升了线路电压、严重缩短了用电负荷的寿命。