当电流在纯电阻即电阻为零的情况,电流能够全部正常的转换为所需要的能量,进行无功功率补偿。这个时候的电流是不进行任何做功过程的,消耗的电能为零。但是在实际的生产和用电过程中,我们所使用的电流载体都为非纯容性或纯感性,存在一定的电阻,有时候甚至会很大,这个时候的电流没有全部转换为我们所需要的能量,反倒进行了做功过程。电能没有得到很好的利用,造成了大量电能的浪费现象。

在现代电网系统问题中,谐波污染问题一直存在,而谐波治理问题也备受政府和企业关注。谐波污染的危害极大,会导致电气设备加速老化,损耗加重,使用效率降低等问题,还容易产生干扰信号,影响精密仪器操作,给生活和生产受到影响。更为严重的是,它还极有可能造成重大安全事故,间接危害人们的身体健康。一般谐波滤除方法分为有源和无源两种方式,相比较来说有源滤波器价格稍贵,但从性价比上考虑,使用有源滤波器是比较明智的。

有源滤波装置实时检测电网中负载电流,快速分离出谐波电流分量,并根据谐波电流的大小发出控制指令,实时产生大小相等、方向相反的补偿电流注入到电网中,实时瞬时抵消滤除谐波电流及无功补偿。

德国进口有源电力滤波器

制定方案之前,需要明确谐波治理的目标。一般情况下,谐波治理目标包括以下几点:

无论谐波治理的最终目的是什么,其本质就是减小负载向电网注入的谐波电流,因为谐波电流是谐波问题的根源。只不过,针对不同的目的,控制谐波电流的位置不同,也就是采用的谐波治理方案不同。

1.电压不平衡是指三相电压的幅值或相位不对称。不平衡的程度用不平衡度(电压负序分量和正序分量的方均根值百分比)来表示,典型的三相不平衡是指不平衡度超过2%,短时超过4%。在电力系统中,各种不平衡工业负荷以及各种接地短路故障都会导致三相电压的不平衡。

2.过电压是指持续时间大于1分钟,幅值大于标称值的电压。典型的过电压值为1.1~1.2倍标称值。过电压主要是由于负载的切除和无功补偿电容器组的投入等过程引起,另外,变压器分接头的不正确设置也是产生过电压的原因。

6.供电中断是指在一段时间内,系统的一相或多相电压低于0.1倍标称值。瞬时中断定义为持续时间在0.5个周期到3秒之间的供电中断,短时中断的持续时间在3~60秒之间,而持久停电的持续时间大于60秒。

1.限流电抗器——又叫串连电抗器。补偿电容器组回路中串入电抗器后,能抑制电容器支路的高次谐波,降低操作过电压,限制故障过电流。

并联电抗器降低工频电压升高。超高压输电线路一般距离较长,可达数百公里,由于线路采用分裂导线,线路的相间和对地电容均很大,在线路带电的状态下,线路相间和对地电容中产生相当数量的容性无功功率(即充电功率),且与线路的长度成正比,其数值可达200~300kvar,大量容性功率通过系统感性元件(发电机、变压器、输电线路)时,末端电压将要升高,即所谓“荣升”现象。在系统为小运行方式时,这种现象尤其严重。在超高压输电线路上接入并联电抗器后,可明显降低线路末端工频电压的升高。

德国进口有源电力滤波器

并联电抗器可避免发电机带空长线出现自励过电压。当发电机经变压器带空载长线路启动,空载发电机全电压向空载线路合闸,发电机带线路运行线路末端甩负荷等,都将形成较长时间发电机带空载线路运行,形成了一个L-C电路,当空长线电容C的容抗值Xc合适时,能导致发电机自励磁(即L-C回路满足谐振条件产生串联谐振)。自励磁会引起工频电压升高,其值可达1.5~2.0倍的额定电压,甚至更高,它不仅使并网的合闸操作(包括零起升压)成为不可能,且持续发展也将严重威胁网络中电气设备的安全运行。并联电抗器能大量吸收空载长线路的容性无功功率,破坏发电机自励磁条件。

并联电抗器有利于单相重合闸。为了提高运行可靠性,超高电网中常采用单相自动重合闸,即当线路发生单相接地故障时,立即断开该相线路,待故障处电弧熄灭后再重合该相。由于超高压输电线路间电容和电感(互感)很大,故障相断开短路电流后,非故障相(电源中性点接地)电源将经过这些电容和电感向故障点继续提供电弧电流(即潜供电流),使故障处电弧难于熄灭。如果线路上并联三相Y形的电抗器,且Y形接线的中性点经小电抗器接地,就可以限制和消除单相接地处的潜供电流,使电弧熄灭,有利于重合闸成功。这时的小电抗器相当于消弧线圈。