相对于无源LC滤波器的只能被动吸收固定频率与大小的谐波而言,有源电力滤波器可以通过采样负载电流并进行各次谐波和无功的分离,控制并主动输出电流的大小、频率和相位,并且快速响应,抵消负载中相应电流,实现了动态跟踪补偿,而且可以既补谐波又补无功和不平衡。主要克服了LC滤波器等传统的谐波抑制和无功补偿方法的缺点。

该电路拓扑结构是在串联型有源滤波器的基础上使用一些大容量的无源L-C滤波网络来承担消除低次谐波,进行无功补偿的任务。而串联型有源滤波器只承担消除高次谐振及阻尼无源LC网络与线路阻抗产生的谐波谐振的任务。从而使串联型有源滤波器的电流、电压额定值大大减少(功率容量可减少到负载容量的5%以下),降低了有源滤波器的成本和体积。从经济角度而言,这种结构形式在目前是一种值得推荐的方案。其拓扑图如下所示:

主要应用场合有配有变频设备等类似负载的场合、配有不稳定负载的场合、轨道交通、石油化工、海洋石油、汽车制造、机械重工、污水处理、采矿冶炼、市政工程、电信银行、医院、智能建筑、会议中心、游乐中心、水泥、电子、造纸、橡胶、半导体、钢铁厂、有色金属冶炼、电气化铁路等。

有源滤波强制标准

有源电力滤波器实现的功能,滤除电流谐波可以高效的滤除负荷电流中2~25次的各次谐波,从而使得配电网清洁高效,满足国标对配电网谐波的要求。该产品真正做到自适应跟踪补偿,可以自动识别负荷整体变化及负荷谐波含量的变化而迅速跟踪补偿,80us响应负荷变化,20ms实现完全跟踪补偿。

有源电力滤波器最终实现的目的:1、提高企业设备的供电质量,提供设备运行的可靠性,减少因设备误动作而造成的经济损失。2、降低用电设备发热,减少绝缘老化,从而提高设备的使用寿命,减少设备的维护费用。3、减少电容器的谐振几率,提高用电安全。4、减少谐波产生的电磁干扰,保障弱点系统正常工作。5、满足国家及地方标准要求,避免罚款。

电容器的电容量增大有两种情况:第一种是无内熔丝的电容器一旦发现电容量增大,即超过一个串联段击穿所引起的电容量增大,应立即退出运行;第二种是有内熔丝的电容器应考虑为一个元件击穿故障,相应的内熔丝没有熔断引起电容量增大的,要立即退出运行。总之,无论哪种情况都要立即退出运行,以防止电容器带故障运行而发展成扩大性故障。

电容器组在运行中继电保护误动或拒动,可能使保护的定值与实际不相符合,灵敏度过高容易误动,灵敏度过低容易拒动,另外,继电器存在问题对策如下:

户外式电容器受天气及周围环境的影响,外壳,构架油漆容易脱落和生锈,同时,外壳,支持绝缘子和其他配件如不定期清扫会严重积尘,不利于电容器安全运行。因此要定期对设备进行维护,特别是周围环境不大好的更要重视。使之电容器外壳,构架以及其他设备保持油漆完好和良好的辐射表面,构架采用涂锌件,防止生锈。另外,户外式设备拟每季或半年清扫一次,但是要根据季节特点和周围环境做到勤清扫,如某变电站每年2次雾季前进行小水量边冲边揩,效果很好。/p>

输入端谐波产生机理:变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6n±1次高次谐波,其中的高次谐波将干扰输入供电系统。如果出现电源侧电抗充分小、换流重叠角\"可以忽略强狂,那么n次高次谐波为基波电流的1/n。输出端谐波产生机理:在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形。对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含基波和其他高次谐波。

(2)感应电动机:电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。

有源滤波强制标准

另外,高次谐波还会对电脑、通信设备、电视及音响设备、载波遥控设备等产生干扰,使通信中断,产生杂讯,甚至发生误动作,另外还会对照明设备产生影响。

3、不管采用何种方法,都不可能完全解决高次谐波的污染问题,在实际工业生产中为消除变频器高次谐波对电气设备的干扰,主要从传导、辐射和耦合三个方面解决。总的原则是抑制和切断干扰源、切断干扰对系统的耦合通道和降低对干扰信号的敏感性。解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离掉,解决辐射干扰就是对辐射源或*扰的线路进行屏蔽,解决耦合干扰就是合理布置干扰源和被干扰线路的距离、走向,避免耦合产生。