国家政策一直对谐波滤除实行强硬的管理规范,倡导企业使用有源滤波器作为主要谐波滤除装置,而类型的滤波器容易导致共振,并且对于功率补偿效果不佳,使用有源滤波就可以避免这些麻烦。

眼下不少企业仅在出现了故障现象后,才开始考虑谐波治理的问题。其中,谐波导致无功补偿装置烧毁的情况最为常见。

1.电压不平衡是指三相电压的幅值或相位不对称。不平衡的程度用不平衡度(电压负序分量和正序分量的方均根值百分比)来表示,典型的三相不平衡是指不平衡度超过2%,短时超过4%。在电力系统中,各种不平衡工业负荷以及各种接地短路故障都会导致三相电压的不平衡。

有源滤波改造

5.电压骤升是指在工频下,电压的有效值短时间内上升。典型的电压骤升值为1.1~1.8倍标称值,持续时间为0.5个周期到1分钟。电压骤升产生的原因主要有电力系统发生故障,如系统发生单相接地等故障;大容量电机的停止和负载突降也是电压骤升的重要原因。

2.并联电抗器——一般接于超高压输电线的末端和地之间,起无功补偿作用。

6.滤波电抗器——用于整流电路,以减少电流上纹波的幅值;可与电容器构成对某种频率共振的电路,以消除电力电路某次谐波的电压或电流。

并联电抗器降低操作过电压。操作过电压产生于断路器的操作,当系统中用断路器接通或切除部分电气元件时,在断路器的断口上会出现操作过电压,它往往是在工频电压升高的基础上出现的,如甩负荷、单相接地等均产生工频电压升高与操作过电压迭加,使操作过电压更高。所以,工频电压升高的程度直接影响操作过电压的幅值。加装并联电抗器后,限制了工频电压升高,从而降低了操作过电压的幅值。当断路器带有并联电抗器的空载线路时,被开断线路上的剩余电荷沿着电抗器泄入大地,使断路器断口上的恢复电压由零缓慢上升,大大降低了断路器断口发生重燃的可能性,因此也降低了操作过电压。

并联电抗器可避免发电机带空长线出现自励过电压。当发电机经变压器带空载长线路启动,空载发电机全电压向空载线路合闸,发电机带线路运行线路末端甩负荷等,都将形成较长时间发电机带空载线路运行,形成了一个L-C电路,当空长线电容C的容抗值Xc合适时,能导致发电机自励磁(即L-C回路满足谐振条件产生串联谐振)。自励磁会引起工频电压升高,其值可达1.5~2.0倍的额定电压,甚至更高,它不仅使并网的合闸操作(包括零起升压)成为不可能,且持续发展也将严重威胁网络中电气设备的安全运行。并联电抗器能大量吸收空载长线路的容性无功功率,破坏发电机自励磁条件。

电抗器在电力系统中的主要有以下用途

一直以来,针对变压器不均衡运作除开尽可能有效分派负载以外,基本上沒有切实可行的运作方式。低压混和无功补偿设备是一种有源(SVG)和无源(TSC)紧密结合的混和补偿计划方案。独立的TSC根据操纵资金投入电力网的电容器几组,归属于有级补偿,精密度低,响应速度慢。

有源滤波改造

电容器在原理上等于造成溶性无功电流量的发电机组。其无功补偿的原理是把具备溶性输出功率负载的设备和理性输出功率负载串联在同一电容器上,动能在二种负载间互相变换。那样,电力网中的变电器和电力线路的负载减少,进而輸出有功工作能力提升。在輸出一定功率因素的状况下,供配电系统的耗损减少。较为起來电容器是缓解变电器、供配电系统和工业生产配电设备负载的最简单、最经济发展的方式。因而,电容器做为供电系统的无功补偿刻不容缓。当今,选用串联电容器做为无功补偿设备早已十分广泛。

低压分散补偿就是说依据某些用电量机器设备对无功的需求量,将每台或几台低压电容器组,分散化地安裝在用电量机器设备周边,以补偿安裝位置前面的全部高低压路线和变电器的无功输出功率。其优势是用电量机器设备运作时,无功补偿资金投入,用电量机器设备停止运营时,补偿机器设备也撤出,可降低配电网和变电器中的无功流动性,进而降低有功耗损;可降低路线的输电线横截面及变电器的容积,占位性病变小。缺陷是使用率低、项目投资大,对调速运作,正反面向运作,启动出光、匝间、反接制动系统的电动机则不适合。