要选用合适的熔断器,安秒特性符合要求:熔丝通过1.1倍额定电流时,4h不熔断;熔丝通过1.5倍额定电流时,熔丝熔断时间不小于75S;熔丝通过2.0倍额定电流时,熔丝熔断时间应小于7.5S。

输入端谐波产生机理:变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6n±1次高次谐波,其中的高次谐波将干扰输入供电系统。如果出现电源侧电抗充分小、换流重叠角\"可以忽略强狂,那么n次高次谐波为基波电流的1/n。输出端谐波产生机理:在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形。对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含基波和其他高次谐波。

与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰;电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。高次谐波的危害具体表现在以下几个方面:

优质有源滤波柜

(5)保护电器:电流中含有的谐波会产生额外力距,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。

2、对于变频器输出侧高次谐波污染的抑制措施

除了采用诸如隔离、屏蔽、接地、合理布线等抑制干扰传播的技术方法以外,还可以采取回避和疏导的技术处理,如滤波、吸收和旁路等等,这些回避和疏导技术简单而巧妙,有时可以代替成本费用昂贵而质量体积较大的硬件措施,收到事半功倍的效果。

使用电力的用户,需要安装相关设备改变无功功率的流动,而无功补偿就是通过减少或者补偿电力传送过程中的无功功率来实现对电压的控制,以实现降低损耗,提升质量,保证电力系统安全的目标。

由此可见功率因数的高低对系统影响很大,过高或太低,都会存在罚款,而且都会造成不同的影响;个人认为它就好比车轴的润滑油,太少会增加车轴的负担减少寿命,太多会造成打滑;功率因数不仅对电力系统,而且对企业的经济运行有着重大意义。工业企业在考虑提高功率因数时,应采用人工无功补偿装置,以提高电力系统的功率因数,改善供电质量。无功补偿电容器具有投资少,有功功率损耗小,结构简单紧凑,运行维护方便,故障范围小等优点,故在一般企业供配电系统得到广泛应用。确定无功功率的补偿方案,除应作技术经济比较外,还应考虑下列因素:

对于供用电设备大多数都是感性负载,感性负载能量体现为电磁转换,电部分转换成我们实际所需的有功功率,磁部分需要消耗无功功率,无功功率供给有两种方式,一种是从用电系统索取,这样会导致功率因数低下;另一种是给感性负载加补偿装置,就地补偿感性负载所需的无功功率。

有源滤波装置实时检测电网中负载电流,快速分离出谐波电流分量,并根据谐波电流的大小发出控制指令,实时产生大小相等、方向相反的补偿电流注入到电网中,实时瞬时抵消滤除谐波电流及无功补偿。

优质有源滤波柜

再次,提高配电系统(包括无功补偿装置、继电保护器、电缆等)的可靠性;

眼下不少企业仅在出现了故障现象后,才开始考虑谐波治理的问题。其中,谐波导致无功补偿装置烧毁的情况最为常见。