由于电力系统中使用了大量的电力电子器件,特别是大功率直流及变频设备等,产生了大量的谐波,致使补偿电容器频繁损坏,甚至无法投入补偿电容器。当谐波较小时,可以用谐波抑制器,电力系统中谐波较高时,要用串联电抗器,也可在滤波器中与电容器串联或并联用来限制电网中的高次谐波。

消弧电抗器接于三相变压器的中性点与地之间,在三相电网的一相接地时,可以供给感性电流,以补偿流过接地点的电容性电流,使电弧不易起燃,从而避免电弧多次重燃引起过电压。消弧电抗器广泛用于6kV-10kV级的谐振接地系统。

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此,容易使电脑死机;高次谐波会在中性线上叠加,中性线电流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机屏幕的频闪现象;由于开关、短路以及负载变化而引起的短时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸变会引起在一个正弦周波内的额外过零点,影响测试设备,干扰程序控制装置的同步性,导致控制装置死机。

有源滤波yapf3l

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正弦电流大,电弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装置动作的设定值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

a.3次谐波含量较小,可选择0.1~1(%)的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

b.3次谐波含量略大,5次谐波含量较小,选择0.1~1(%)的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度;

无源滤波的主要结构是用电抗器与电容器串联起来,组成LC串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。因此,业主不得不要求滤波。因而,其市场的前景可观,经济效益也就可观了。

有源谐波滤除装置是在无源滤波的基础上发展起来的,它的滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。它主要是由电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。但由于受到电力电子元件耐压,额定电流的发展限制,成本极高,其制作也较之无源滤波装置复杂得多,成本也就高得多了。其主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。对单台的装置而言,其利润是可观的,但用户一般不愿意用有源滤波,对于谐波的含量,不必滤得太干净,只要不危害其他用电器也就可以

然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金支持,技术的进步和发展也就受到很大程度地制约。这使它在很多领域备受冷落。

要达到上述目标需要厂商对超级电容器市场有一个逐年上升的投资力度,主要用于在设备的研发和生产两方面。与此同时,政府扩大资金和技术支持也将起到至关重要的作用。

有源滤波yapf3l

输入侧产生谐波机理:不限于通用变频器,晶闸管供电的直流电动机、无换向器电动机等凡是在电源侧有整流回路的,都将产生因其非线性引起的谐波。在三相桥式整流回路中,输入电流的波形为矩形波,波形按傅立叶级数分解为基波和各次谐波,通常含有6n+1(n=l,2,3….)次谐波。其中的高次谐波将干扰输入供电系统。

4、非线性负荷在其工作过程中将基波的部分功率转变成谐波有功,谐波有功将在网络内流动,并在各输配电元件和其他设备中产生损耗和干扰。