目前,微型超级电容器在智能三表、消费电子和小型机械设备上得到广泛应用。由于超级电容具备使用寿命长、充电时间短、可显示存电量、材料无限、低温性能良好等优点,市场对超级电容在新能源汽车、轨道交通、风光发电、军工等领域的应用赋予了较大期待。

一个产业的发展壮大不仅需要国家政策的大力支持,还需要重视发挥市场的力量。展会作为最有效的市场机制平台,在促进行业技术交流合作,推动产业发展方面发挥着至关重要的作用。据悉,中国最大超电展--第六届中国(上海)国际超级电容器产业展览会(CSCF2015)将于2015年8月26-28日在上海新国际博览中心举行。

作为我国超级电容器产业领域最大、最专业的展会,经过五年的发展,中国最大超电展积累了一大批高质量的展商和采购商。国外超级电容巨头Maxwell,Nesscap,Korchip,VinaTech,LSMtron,Samwha以及中国南车,立塬新能源,上海奥威,耐普恩,海特电子,江海股份,万裕集团旗下富华德电子,肇庆绿宝石,博磊达等国内知名企业将同台亮相,展示最新超级电容产品和技术。

云南有源滤波器

3、当220~500kV电网的受端系统短路容量不足和长距离送电线路中途缺乏电压支持时,为提高输送容量和稳定水平,经技术经济比较合理时,可采用调相机。

经过20多年的发展,我国在谐波治理技术上取得了不小的成就,现在所用的谐波治理技术和等待解决的问题如下:1)电力系统谐波污染十分严重,其中5次,7次,11次谐波电流含量对电网危害很大通过对电力协同谐波状况的测试,可知目前谐波污染十分严重,有气是早些年因经济的高速发展,大量投入运行变频器和电化学用特大功率产生的5次,7次,11次谐波电流的含量分别占基波的20%,11%,6%。这种符合对大功率的用户来说危害很大,是的电动机,变压器等用电器的铜损铁损打打增加,缩短了设备的使用寿命。

3)有源滤波因成本高及单柜容量小,阻碍了其在国内的推广对于严峻的谐波污染问题,有源滤波是提高电能质量的有效工具。有源滤波作为高科技技术,正在不断完善和发展中。由于国内有源滤波器的电力电子器件几乎全靠进口,因此决定了其成本较高,另因控制技术复杂,单柜容量小,自身损耗大,加之目前国际上大容量有源滤波器技术还不十分成熟,所以当前国内可实用化常见的有源滤波器容量仍不超过600kVar,且其运行可靠性也不及无源滤波装置,因此有源滤波技术还需进一步地改善和提高。

6)谐波治理控制策略应更灵活在控制策略方面,电力系统以及有源滤波器的非线性和各个控制参数之间的耦合作用使得有源电力滤波器难以获得很好的补偿性能,为此,需研究诸如自适控制,非线性控制以及控制参数之间的解藕控制等先进控制算法。另外,现有的控制策略都是自始自终都采用同种控制规律,不能根据电网参数的变化自动选择更为优越的控制策略。

8)用于特高压直流输电系统的滤波器研究至今仍只局限于理论研究鉴于目前世界上还没有一条特高压直流输电工程正式投入运行,因此针对特高压直流输电系统的滤波器研究只局限于理论研究,只能以高压直流输电的研究成果为基础,在结合特高压直流输电的特点,进行模拟实验,从而推导出可能适用于特高压直流输电工程的结论。

在低压配电系统中,无功补偿的补偿位置、补偿方式、补偿容量、控制器的选择、串联电抗器的选择等,都需要针对不同的项目进行优化设计。目前工程实际存在的无功补偿方式按补偿位置分类有集中补偿、就地补偿和分组补偿。其中在变电站集中补偿的方式最为广泛。为了抑制电容器回路合闸涌流和谐波电流,通常在电容器回路中串接电抗器。串入的电抗器自身的感抗会抵消电容器的部分容抗。反向压降会抬高电容器的端电压,即对电容器的有效补偿量产生影响。因而,在进行无功补偿容量的计算时,要根据系统运行电压、电抗率的选择以及电容器额定电压进行修正计算,算出实际需要的无功补偿容量,下面对低压配电系统集中补偿的无功容量的选择进行简单分析。

静止无功补偿器是由可控硅控制的可调电抗器与电容器并联组成的新型无功补偿装置,具有极好的调节性能,能快速跟踪负荷的变动,改变无功功率的大小,能根据需要改变无功功率的方向,响应速度快,不仅可以作为一般的无功补偿装置,而且是唯一能用于冲击性负荷的无功补偿装置。

云南有源滤波器

输入端谐波产生机理:变频器的主电路一般为交一直一交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经电容滤波及大功率晶体管开关元件逆变为频率可变的交流电压。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6n±1次高次谐波,其中的高次谐波将干扰输入供电系统。如果出现电源侧电抗充分小、换流重叠角\"可以忽略强狂,那么n次高次谐波为基波电流的1/n。输出端谐波产生机理:在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形。对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含基波和其他高次谐波。

与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰;电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。高次谐波的危害具体表现在以下几个方面: