6.滤波电抗器——用于整流电路,以减少电流上纹波的幅值;可与电容器构成对某种频率共振的电路,以消除电力电路某次谐波的电压或电流。

并联电抗器降低操作过电压。操作过电压产生于断路器的操作,当系统中用断路器接通或切除部分电气元件时,在断路器的断口上会出现操作过电压,它往往是在工频电压升高的基础上出现的,如甩负荷、单相接地等均产生工频电压升高与操作过电压迭加,使操作过电压更高。所以,工频电压升高的程度直接影响操作过电压的幅值。加装并联电抗器后,限制了工频电压升高,从而降低了操作过电压的幅值。当断路器带有并联电抗器的空载线路时,被开断线路上的剩余电荷沿着电抗器泄入大地,使断路器断口上的恢复电压由零缓慢上升,大大降低了断路器断口发生重燃的可能性,因此也降低了操作过电压。

并联电抗器有利于单相重合闸。为了提高运行可靠性,超高电网中常采用单相自动重合闸,即当线路发生单相接地故障时,立即断开该相线路,待故障处电弧熄灭后再重合该相。由于超高压输电线路间电容和电感(互感)很大,故障相断开短路电流后,非故障相(电源中性点接地)电源将经过这些电容和电感向故障点继续提供电弧电流(即潜供电流),使故障处电弧难于熄灭。如果线路上并联三相Y形的电抗器,且Y形接线的中性点经小电抗器接地,就可以限制和消除单相接地处的潜供电流,使电弧熄灭,有利于重合闸成功。这时的小电抗器相当于消弧线圈。

有源电力滤波器效果如何

由于电力系统中使用了大量的电力电子器件,特别是大功率直流及变频设备等,产生了大量的谐波,致使补偿电容器频繁损坏,甚至无法投入补偿电容器。当谐波较小时,可以用谐波抑制器,电力系统中谐波较高时,要用串联电抗器,也可在滤波器中与电容器串联或并联用来限制电网中的高次谐波。

随着我国工矿企业大功率非线性负荷的日益增加,电网的无功冲击和谐波污染呈不断上升的趋势,煤矿电力系统对无功功率的需求日益增大。无功平衡对提高电力系统的经济效益和改善供电质量非常重要,同时要求其能够动态调节,在负荷高峰时能提供较多的容性无功,以满足工矿企业的无功需求,稳定系统电压;另一方面又要能提供感性无功,以平衡轻载时大量电缆的充电功率,保证系统电压不致过高。电容器与电抗器串联组成的LC串联电路,具有抑制一定频率谐波的功能,通常低压串联电抗器用来抑制3、4、5次谐波。

智能建筑中谐波主要来自两方面:一是大量非线性负荷形成的谐波源,例如计算机系统、开关电源、电子式荧光整流器等导致配电系统的电压、电流发生畸变,产生谐波;二是公用电网本身具有一定的谐波含量和配电变压器作为谐波源产生的谐波,由公用电网侧传输至配电系统。

③在谐波电压作用下,电容器会产生额外的功率损耗,加快绝缘介质的老化。更为严重的是,大量谐波电流很可能引发电容器和系统其他元件之间的并联谐振或串联谐振,造成电容器超载而损坏;使与电容器连接的配电回路中所有线路、设备因电压闪变、超压、过负荷而损坏。

⑥对于电力电缆和配电线路,谐波电流频率增高会引起明显的集肤效应,导线电阻增大,线损加大,发热增加,绝缘过早老化,容易发生接地短路故障,形成潜在的火灾隐患。在智能建筑中大量集中使用电子计算机和大面积采用电子节能气体光源照明的场合,中性线电流甚至达到相线电流的2倍,致使中性线过热、烧毁,甚至导致火灾。

b.3次谐波含量略大,5次谐波含量较小,选择0.1~1(%)的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度;

无源滤波的主要结构是用电抗器与电容器串联起来,组成LC串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。因此,业主不得不要求滤波。因而,其市场的前景可观,经济效益也就可观了。

有源电力滤波器效果如何

超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。