并联电抗器可避免发电机带空长线出现自励过电压。当发电机经变压器带空载长线路启动,空载发电机全电压向空载线路合闸,发电机带线路运行线路末端甩负荷等,都将形成较长时间发电机带空载线路运行,形成了一个L-C电路,当空长线电容C的容抗值Xc合适时,能导致发电机自励磁(即L-C回路满足谐振条件产生串联谐振)。自励磁会引起工频电压升高,其值可达1.5~2.0倍的额定电压,甚至更高,它不仅使并网的合闸操作(包括零起升压)成为不可能,且持续发展也将严重威胁网络中电气设备的安全运行。并联电抗器能大量吸收空载长线路的容性无功功率,破坏发电机自励磁条件。

电力系统发生短路时,会产生非常大的短路电流。为了保障电气设备的动稳定性和热稳定性,常在出线断路器处串联电抗器,以增大短路阻抗,达到限制短路电流的目的。由于采用了电抗器,在发生短路时,电抗器上的电压降较大,也起到了维持母线电压的作用,使母线上的电压波动较小,保证了非故障线路上的电气设备运行的稳定性。

随着我国工矿企业大功率非线性负荷的日益增加,电网的无功冲击和谐波污染呈不断上升的趋势,煤矿电力系统对无功功率的需求日益增大。无功平衡对提高电力系统的经济效益和改善供电质量非常重要,同时要求其能够动态调节,在负荷高峰时能提供较多的容性无功,以满足工矿企业的无功需求,稳定系统电压;另一方面又要能提供感性无功,以平衡轻载时大量电缆的充电功率,保证系统电压不致过高。电容器与电抗器串联组成的LC串联电路,具有抑制一定频率谐波的功能,通常低压串联电抗器用来抑制3、4、5次谐波。

h有源滤波器

恶劣的谐波环境将会对智能建筑中用电设备和系统造成巨大的危害,主要表现在以下几个方面:

①由于设备自身产生的接地电流在设备和真实地之间产生一个电压降,因此,容易使电脑死机;高次谐波会在中性线上叠加,中性线电流能够在建筑物金属结构上任意流动,从而产生不受控制的磁场,即引发计算机屏幕的频闪现象;由于开关、短路以及负载变化而引起的短时间电压变化将会引起灯光频闪,过度的频闪将会使人体不舒服;严重的谐波畸变会引起在一个正弦周波内的额外过零点,影响测试设备,干扰程序控制装置的同步性,导致控制装置死机。

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正弦电流大,电弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装置动作的设定值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

(1)电容器装置接入电网处的背景谐波为3次及以上时,一般为12%;也可采用4.5~6(%)与12%两种电抗率。设计规范说的较含糊,实际较难执行。因此上述情况应区别对待:

b.3次谐波含量略大,5次谐波含量较小,选择0.1~1(%)的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度;

目前常用的谐波治理综合解决方案的方法无外乎有二种,无源滤波和有源滤波。其两者差异如下:

无源滤波的主要结构是用电抗器与电容器串联起来,组成LC串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。因此,业主不得不要求滤波。因而,其市场的前景可观,经济效益也就可观了。

h有源滤波器

超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

■增加超级电容器生产厂商数量,通过市场竞争的手段刺激相关技术的研发;