无功补偿控制器原理

电容器在交流电压作用下能“发”无功电力(电 容电流),如果把电容器并接在负荷(如电动机)或供电设备(如变压器)上运行,那么,负荷或供电设备要“吸收”的无功电力,正好由 电容器“发出”的无功电力供给,这就是并联补偿。并联补偿减少了线路能量损耗,可改善电压质量,提高功率因数,提高系统供电能力。

集中补偿适用于单台设备谐波含量小,但设备数量多、布 局分散的场合,比如办公大楼(主要设备是个人电脑、节能灯、变频空调、电梯等),虽然单台设备的电流小,谐波含量低,但整栋大楼的电 流大,谐波电流也大。

 随器补偿:将低压电容器通过低压保险接在配电变 压器二次侧,以补偿配电变压器空载无功的补偿方式。它能有效地补偿配变空载无功。限制农网无功基荷,使该部分无功就地平衡,从而提 高配变利用率,降低无功网损,是目前补偿无功最有效的手段之一。

无功补偿控制器原理

滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电 解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化 而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容。

耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频 分量损失过大,一般总采用容量较大的电解电容。(文/蒋雅娴)

②智能建筑中线缆密 布,系统设备繁多,微电子装备复杂,且防护能力弱,高次谐波将会使智能化系统设备产生误码、错码、误动作,使信号系统受到污染、产 生噪声,甚至连通话质量都不能保证。随着低电压信号在IT设备中使用的增加,比特错误率也随之提高,甚至可以高到使整个网络瘫痪。

④配电回路的谐波电流含量高会使断路器遮断能力降低。这是因为畸变电流过零点时,电弧电流随时间的变化要比工频正 弦电流大,电弧电压的恢复要迅速得多,使电弧容易重燃,导致误跳闸或在该跳闸的时候根本不跳。剩余电流可能会达到使剩余电流保护装 置动作的设定值。事实表明,空气电磁断路器不能遮断其分断能力范围内波形畸变率超过50%的故障电流,而且还会导致断路器损坏。

变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电 气设备产生干扰;尤其是在高精度仪器|仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离 、滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。

非线形负荷产生的谐波电流注入电网,使变压器低压侧谐波电压升高,低压侧负荷由于谐波干 扰而影响正常工作,另一方面谐波电压又通过供电变压器传递到高压侧干扰其它用户。

谐波同样使电动机铜损和铁损增加,温度上升。同时谐波电流会改变电磁转距,产生 振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。

无功补偿控制器原理

高频谐波电流会在导体中引起集肤效应,产生额外温升增加铜耗。 特别是零序的3次谐波电流在中性线中是相互叠加的,使供电系统中的中性线电流很大,有的中性线上的电流还会超过相电流,使中性线发热 ,加速绝缘层老化,甚至引起火灾。此外当中性线上有较大的谐波电流时,导线的阻抗能产生大的中性线电压降,干扰各种微电子系统的正 常工作。

在实际工业生产中为消除变频器高次谐 波对电气设备的干扰,主要从抑制干扰源、切断干扰对系统的耦合通道并且避免功率补偿电容器与系统谐振二个方面解决。