无功补偿行业 英文短文

在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一 个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时, 阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不 允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。

电动汽车成为新一代汽车的发展趋势。根据电磁兼容的理论,可以预见,大量使用的充电装置,如果不采用妥善的电磁兼容设计, 必然会导致严重的电磁兼容问题。

随着科学技术的发展,工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重 越来越大。谐波给电力系统带来的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝 缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。 谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。因此, 对谐波的研究以及如何抑制、治理已成为一个具有重要意义的课题。

无功补偿行业 英文短文

相关标准和规范《电能质量公用电网谐 波》GB/T14549-1993《低压电气及电子设备发出的谐波电流限制标准》GB17625.1-1998国际电工学会标准:IEC61000

数据中心离不开电,没有电能数据中心的任何设备都无法运转,而且数据中心对电能的需求是巨大的,一个中型数据中心运行一天 就要消耗掉十几万度的电。很多人只关注数据中心的高能耗问题,想方设法减少数据中心电的使用量,但是都忽略了一个问题,就是电的质 量。

我国还是一个发展中国家,经济的大发展需要大量的电力供应,工业负荷也不断大量增加,如:大型电力电子应用装置、 变频设备、电气化铁道、炼钢电弧炉、冶金化工设备、高速铁路、电梯、起重机等,这些工业负荷对整个城市的电网质量都带来大量的谐波 干扰,随着这些非线性、冲击性负荷的大量使用,使得电能质量变得更加突出。这些年在城市里很少遇到大面积的停电,但是电压的波动就 时有发生了,比如家里的灯泡突然变得忽明忽暗,尤其是到了夏天用电高峰期,总感觉家里的灯泡不是那么亮,实际上这时电网的电压运行 在较低的水平,在输出电流不变的情况下,灯泡的功率就低了,看起来也就不会那么亮了。数据中心里有不少的精密仪器,对电网运行质量 较敏感,设备长期在这种供电环境下运行,会大大缩短设备的使用寿命,增加数据中心设备故障率,有时供电的波动也会造成设备无法正常 运行,造成业务中断。

电网除了电压上的变化,还有不少其它 的影响,这些都对数据中心设备电源的运行造成了干扰。归结起来电能质量对数据中心的影响主要有以下7种情况:

2.失电。一般是由气 候恶劣、变压器故障造成的。失电是指由于线路故障而引起的失电开关跳闸,又在很短的时间内迅速消除,这个过程往往在几个毫米内就完 成。失电比跌落要严酷,相当于在短时间内设备完成没有供电,只是持续的时间要比跌落短。设备要做到不受失电的影响,就需要设计有一 个大电容。在失电发生时,电容接管供电进行短时的放电,维持设备运行,当然具有这样功能的基本都是承载核心业务、关键业务的高端设 备。

4.电气噪声。一般是由雷达、无线电信号、工业设备生产的弧光、转换器和逆变器造成的。数 据中心里都是清一色的用电设备,在运行时必然会产生一些非本意用途的无规则的微弱电流、电压或电磁场等。为了消除这些噪声对周围设 备的影响,都会要求设备运行时漏电流、电压不能过大,对设备的漏电流大小也有明确要求。当我们用手触碰一些设备时,有时会被电到, 要么是设备没有很好的接地,要么是设备的漏电流过大,不符合标准要求。

以上介绍的这些电网 质量问题都会对数据中心设备运行造成不良影响,有些是致命的,会给数据中心带来灾难性的后果。既然数据中心无法改变电网的质量,那 就要从自身入手,减少电网质量对设备的伤害。首先,数据中心的设备一定要接地,使设备上滤波电路能有效的滤除电网干扰。其次,数据 中心设备要远离载有大电流的导体,产生强电磁场的设备,和一些大功率的非线性负载设备隔开。再次,数据中心设备要增加前级配电保护 装置,增加电能净化设备,比如调压器、滤波器、电涌抑制器、UPS不间断电源。通过这些电能净化设备消除电网质量对数据中心设备的损害 。电网质量对设备的影响往往是潜移默化的,平时很难观察到,往往都是在设备已经发生了故障后才注意到,所以一定要增加防护措施,让 数据中心设备用上安全的电。

无功补偿行业 英文短文

答:交流输电线路的主要参数包括串联电阻、串联电抗和并联电导、并联电容。输电线路输送功率时,串联电抗上的电流滞后于电 压,串联电抗吸收无功功率;并联电容上的电压滞后于电流,并联电容发出无功功率。串联电抗吸收的无功功率与流过输电线路电流的平方 成正比,因此串联电抗吸收的无功功率随负荷大小的变化而变化;并联电容发出的无功功率与输电线路的电压的平方成正比,当线路电压维 持在标称电压允许的范围内时,并联电容发出的无功功率基本保持恒定。当线路发出的无功功率恰好等于其吸收的无功功率时,此时线路的 输送功率为线路的自然功率,沿线路各点的电压幅值大小相同;当线路的输送功率小于线路的自然功率时,线路发出的无功功率将大于吸收 的无功功率;当线路的输送功率大于线路的自然功率时,线路发出的无功功率将小于吸收的无功功率。

答:由于特高压输电线路电压等级高,其无功功率的一个显著特点就是线路电容产生的无功功 率很大,对于100公里的特高压线路,在额定电压为1000千伏以及最高运行电压为1100千伏的条件下,发出的无功功率可以达到40万千乏~50 万千乏,约为500千伏线路的5倍。同时,在特高压电网不同的发展时期,特高压输电线路传输的功率有较大分别,因此无功功率的变化也很 不一样。特高压电网在建设初期,主要是实现点对点的电能输送,受系统阻抗特性及稳定极限的限制,输送功率将小于线路的自然功率,线路 发出的容性无功功率过剩;随着特高压电网的进一步建设,特高压电网将实现各区域电网的互联,电网的输送功率将有很大提高,而且为了 充分利用各区域电网的发电资源,实现水火电互济和更大范围内的资源优化配置,特高压电网的输送功率将随时变化,因而输电线路的无功 功率也将频繁变化。