电力无功功率补偿器

变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电 气设备产生干扰;尤其是在高精度仪器|仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离 、滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。

谐波问题由来已久,近年来这 一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛使用变频器等电力电子装置,使得 与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量增加使用电容器组,并联电容器以 谐振的方式加重了谐波的危害。

由于谐波电流使开关设备在起动瞬间产 生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。

电力无功功率补偿器

电力电子设备通常靠精确电源 零交叉原理或电压波形的形态来控制和操作,若电压有谐波成分时,零交叉移动、波形改变、以致造成许多误动作。

高次谐波由于频率增大,电容器对高次谐波阻抗减小,因过电流而导致温度升高过热、甚至损坏电容器;电容器与系统中的感性负 荷构成的并联或串联电路,还有可能发生谐波共振,放大谐波电流或电压加重谐波的危害。经由电容器组电容和电网电感形成的并联谐振回 路,可被放大到10-15倍。

随着工业生产技术的逐步提高,变频器使用范围的逐步加大,变频 器高次谐波带来的确电磁干扰和污染问题也越来越突出,怎样处理好变频器系统的谐波干扰和污染问题也越为越突出,怎么样处理好变频器 系统的谐波干扰污染成了变频器进一步推广应用,特别是在对谐波污染要求高的场所的推广应用的关键。

(1)、在变频器交流输入侧安装交流电抗器,增大整流阻抗使整流重叠角增大,减小高次谐波电流。(2)、使所有的信号线很好 地绝缘,使其不可能漏电,这样,防止由于接触引入干扰。(3)、将不同种类的信号线隔离铺设(在不同一电缆槽中,划用隔板隔开),可 根据信号不同类型将其按抗噪声干扰的能力分成几等,单独走电缆或电缆槽。

为了使变频控制系统以及与之相连的仪表均能可靠运行并保证测量和控制精度,必须为变频器设立可靠地工作接地。它分 为电源地、信号地、模拟地(AG屏蔽地),在石化和其他防爆系统中还有本安地。

调谐滤波电容器组,由数段电容器及调谐电抗器组合而成 ,每段形成串联共振回路,使共振频率低于最低之谐波频率。对含有5次以上谐波的系统,使用带6%电抗器的调谐式电容器组;对含有3次以 上谐波的系统,使用带14%电抗器的调谐式电容器组。在基本波频率(50Hz)下,调谐滤波电容器组呈现电容性,以提供无功功率;而在谐波频 率下,则呈现电感性,故与网络不会形成并联共振回路,亦即不会造成谐波放大。因此,调谐滤波电容器组,可安全补偿无功功率,亦可消 除低次谐波电流约30%。

当系统对抗干扰能力要求较高、或系统中谐波含量较复杂时,为减少变频器高次谐波的污染,可在电源输入端并联有源滤 波器。有源滤波器能有效虑除电网中2~50次谐波,反应时间小于1毫秒,是目前最有效的一种滤波技术。

电力无功功率补偿器

3.额定电压(UR)。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直 流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/电极层之间存在 空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的 电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4.损耗角正切(tgδ)。在规定频率的正弦电压下,电 容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路 如附图所示。对于电子设备来说,要求RS愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。

6.使用寿命。电容器的使用寿命随温度的增加而减小。主 要原因是温度加速化学反应而使介质随时间退化。