无功补偿量计算

电容器的基本作用就是充电与放电,但由这种基本充放电作用所延伸出来的许多电路 现象,使得电容器有着种种不同的用途,例如:在电动马达中,用它来产生相移;在照相闪光灯中,用它来产生高能量的瞬间放电等等。而在 电子电路中,电容器不同性质的用途尤多,这许多不同的用途,虽然也有截然不同之处,但因其作用均来自充电与放电。

智能建筑中谐波主要来自两方面:一是大量非线性负荷形成的谐波 源,例如计算机系统、开关电源、电子式荧光整流器等导致配电系统的电压、电流发生畸变,产生谐波;二是公用电网本身具有一定的谐波 含量和配电变压器作为谐波源产生的谐波,由公用电网侧传输至配电系统。

②智能建筑中线缆密 布,系统设备繁多,微电子装备复杂,且防护能力弱,高次谐波将会使智能化系统设备产生误码、错码、误动作,使信号系统受到污染、产 生噪声,甚至连通话质量都不能保证。随着低电压信号在IT设备中使用的增加,比特错误率也随之提高,甚至可以高到使整个网络瘫痪。

无功补偿量计算

⑤电压谐波会导致感应电动机的额外损耗。高次谐波导致的扭矩脉动在联轴器和轴承处会产生磨损和裂纹。由于电机速度是固定的 ,谐波中储藏的能量就以额外的热量形式散发了,导致设备过早老化。

凡是在电源|稳压器侧有整流回路的,都将因其非线性而产生高次谐波。变频器的主电路一般为交-直-交组成, 外部输入380V/50HZ的工频电源经晶闸管三相桥路整流成直流,经电容器滤波后逆变为频率可变的交流电。在整流回路中,输入电流的波形为 不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6N±1(N为自然常数)。如果电源侧电抗充分小、换流重叠μ 可以忽略,那么第K次高次谐波电流的有效值为基波电流的1/K。

非线形负荷产生的谐波电流注入电网,使变压器低压侧谐波电压升高,低压侧负荷由于谐波干 扰而影响正常工作,另一方面谐波电压又通过供电变压器传递到高压侧干扰其它用户。

由于谐波电流使开关设备在起动瞬间产 生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。

高频谐波电流会在导体中引起集肤效应,产生额外温升增加铜耗。 特别是零序的3次谐波电流在中性线中是相互叠加的,使供电系统中的中性线电流很大,有的中性线上的电流还会超过相电流,使中性线发热 ,加速绝缘层老化,甚至引起火灾。此外当中性线上有较大的谐波电流时,导线的阻抗能产生大的中性线电压降,干扰各种微电子系统的正 常工作。

在实际工业生产中为消除变频器高次谐 波对电气设备的干扰,主要从抑制干扰源、切断干扰对系统的耦合通道并且避免功率补偿电容器与系统谐振二个方面解决。

(1)、在变频器交流输入侧安装交流电抗器,增大整流阻抗使整流重叠角增大,减小高次谐波电流。(2)、使所有的信号线很好 地绝缘,使其不可能漏电,这样,防止由于接触引入干扰。(3)、将不同种类的信号线隔离铺设(在不同一电缆槽中,划用隔板隔开),可 根据信号不同类型将其按抗噪声干扰的能力分成几等,单独走电缆或电缆槽。

无功补偿量计算

当系统上存在谐波时,使用调谐滤波电容器组,是功率因数补偿的最佳方法之一。 由电容器和电抗器串联组成的非调谐滤波电容器 组,可以在基波频率段补偿无功功率,同时解调谐振电路的自谐振频率。

当系统中的变频器是以三相六脉动全波整流为主时,根据公式谐波次数K=6N±1,谐波以5、7次为主,通常采用并联式5次和7次单调 谐滤波器。