低压无功补偿原理

答:在交流特高压输电线路输送功率较小时,并联电容产生的无功功率大于串联电抗消耗的无功功率,电网无功 过剩较大,电压上升,危及设备和系统的安全;在线路末端三相开断或故障后非全相开断时,线路上将产生工频过电压,同样危及设备和系 统的安全。为了保持输电线路的无功平衡,特别是为了限制轻载负荷引起的电压升高和线路开断时引起的工频过电压,通常需要在线路送端 和受端或其中一端装设固定高压并联电抗器来进行无功补偿。高压并联电抗器可以在线路带轻载负荷的情况下吸收线路并联电容发出的无功 功率,减少过剩的无功功率,限制工频过电压。但是加装固定高压并联电抗器后,在输电线路带重载负荷的情况下,线路电抗需要吸收的无 功功率将大于电容发出的无功功率,线路还需要从送端、受端吸收大量的无功功率。为保证正常的功率输送,通常还采用低压无功补偿设备 。低压无功补偿设备一般安装在特高压变压器低压侧绕组,分为容性补偿设备和感性无功补偿设备,根据线路传输功率的变化分组投切。

问:交流特高压试验示范工程无功补偿方案是什么?

答:为限制工频过电压,特高 压输电线路上安装了大容量的固定高抗,会产生一些负面影响:轻载负荷运行情况下线路的电压偏高或重载负荷运行情况下线路电压偏低。 在变压器的低压侧安装低压无功补偿装置,一方面增加了无功补偿的投资,另一方面,由于受变压器低压侧绕组容量的限制,低压无功补偿 可能不完全满足要求。特高压输电线路的无功补偿仅依靠固定高压并联电抗器加低压无功补偿设备的模式不够灵活方便。如果用可控电抗补 偿代替固定电抗补偿,则能兼顾工频过电压限制和无功功率的调节。可控电抗的调节方式是:线路输送功率小时,电抗补偿容量处于最大值 ,限制线路电压的升高;随着线路输送功率的增加平滑或分级减少电抗的补偿容量,使线路串联电抗吸收的无功主要由并联电容产生的无功 功率来平衡;当三相跳闸甩负荷时,快速反应增大电抗补偿容量来限制工频过电压。前苏联曾在500千伏和750千伏系统采用带火花间隙投入 的并联电抗器,在线路重载时,用断路器退出并联电抗器,维持线路电压;当线路甩负荷出现的工频过电压超过火花间隙放电电压时,火花 间隙击穿,快速投入并联电抗器以限制过电压。带火花间隙投入并联电抗器方式比较复杂,而且火花间隙的放电电压的分散性较大,可靠性 不高。俄罗斯和印度研制并采用了可控高压电抗器,其类型包括磁饱和式可控电抗器(MCSR)(又称磁阀式可控电抗器)和变压器式可控电 抗器(TCSR)两种。至今,俄罗斯有500千伏磁饱和式可控电抗器在试运行,在印度有400千伏变压器式可控电抗器(根据俄罗斯技术制造) 投入运行。在国内的可控电抗研究方面,国内厂家已与国内外有经验的大学和研究所合作,在研制500千伏可控电抗器的同时研制1000千伏特 高压可控电抗器,计划通过500千伏样机的挂网试运行,积累经验,争取可控高抗早日在特高压工程中应用。

低压无功补偿原理

答:为限制工频过电压,特高 压输电线路上安装了大容量的固定高抗,会产生一些负面影响:轻载负荷运行情况下线路的电压偏高或重载负荷运行情况下线路电压偏低。 在变压器的低压侧安装低压无功补偿装置,一方面增加了无功补偿的投资,另一方面,由于受变压器低压侧绕组容量的限制,低压无功补偿 可能不完全满足要求。特高压输电线路的无功补偿仅依靠固定高压并联电抗器加低压无功补偿设备的模式不够灵活方便。如果用可控电抗补 偿代替固定电抗补偿,则能兼顾工频过电压限制和无功功率的调节。可控电抗的调节方式是:线路输送功率小时,电抗补偿容量处于最大值 ,限制线路电压的升高;随着线路输送功率的增加平滑或分级减少电抗的补偿容量,使线路串联电抗吸收的无功主要由并联电容产生的无功 功率来平衡;当三相跳闸甩负荷时,快速反应增大电抗补偿容量来限制工频过电压。前苏联曾在500千伏和750千伏系统采用带火花间隙投入 的并联电抗器,在线路重载时,用断路器退出并联电抗器,维持线路电压;当线路甩负荷出现的工频过电压超过火花间隙放电电压时,火花 间隙击穿,快速投入并联电抗器以限制过电压。带火花间隙投入并联电抗器方式比较复杂,而且火花间隙的放电电压的分散性较大,可靠性 不高。俄罗斯和印度研制并采用了可控高压电抗器,其类型包括磁饱和式可控电抗器(MCSR)(又称磁阀式可控电抗器)和变压器式可控电 抗器(TCSR)两种。至今,俄罗斯有500千伏磁饱和式可控电抗器在试运行,在印度有400千伏变压器式可控电抗器(根据俄罗斯技术制造) 投入运行。在国内的可控电抗研究方面,国内厂家已与国内外有经验的大学和研究所合作,在研制500千伏可控电抗器的同时研制1000千伏特 高压可控电抗器,计划通过500千伏样机的挂网试运行,积累经验,争取可控高抗早日在特高压工程中应用。

均方根电流法的物理概念是线路中流过的均方根电流所产 生的电能损耗,相当于实际负荷在同一时期内所消耗的电能。其计算公式

由于有源电力滤波器的价钱高,为降低补偿安装的投资,主要方法就是降低有源电力滤波器的容量。目前的主要 思路是将有源电力滤波器和无源滤波器混合运用,用无源滤波器滤除谐波源中主要的谐波电流,用有源电力滤波器来进步总体的补偿效果, 这就是混合型有源电力滤波器。有源电力滤波器自身除能补偿谐波外,经过在控制电路上加以改造还能够补偿基波无功、电压闪变以及电压 的不均衡等功用。

灵敏的补偿方式 一机多能,不只能管理谐波,而且能补偿 无功、进步功率因数。既可对单个谐波源独立补偿,也可对多个谐波源集中补偿。管理谐波时还可完成对指定次谐波停止管理。

为减少变压器台数,单台变压器的容量选择一般都大于1000kVA.为限制低压侧的短路电流,正常时变压器解列运行,中间设联络开 关。照明和动力分开设变压器,当动力用电容量太小时,动力变压器可不分开装设,而在低压侧应对动力负荷分类计费。

低压无功补偿装置采用智能低压电子复合开关作为开关元件,彻底解决了电容器投入时的浪涌电流问题,无触头 烧损之虑,无需散热,更不会产生谐波注入,安全可靠性高。

电力电容器包括移相电容器、电热电容器、均压电容器、藕合电容 器、脉冲电容器等。移相电容器主要用于补偿无功功率,以提高系统的功率因数;电热电容器主要用于提高中频电力系统的功率因数;均压 电容器一般并联在断路器的断口上作均压用;藕合电容器主要用于电力送电线路的通信、测量、控制、保护;脉冲电容器主要用于脉冲电路 及直流高压整流滤波。

低压无功补偿原理

随着国民经济的发展,负荷日益增多,供电容量扩大,无功补偿工作必须相应跟上去。用电容器作为无 功补偿时,投资少,损耗小,便于分散安装,使用较广。当然,由于系统稳定的要求,必须配备一定比例的调相机。

提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。