自动无功补偿控制器

谐波问题由来已久,近年来这 一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛使用变频器等电力电子装置,使得 与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量增加使用电容器组,并联电容器以 谐振的方式加重了谐波的危害。

谐波电流和谐波电压将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产 生共振及噪声。

计算机和一 些其它电子设备,通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成 生产或运行中断,导致较大的经济损失。

自动无功补偿控制器

高次谐波主要通过传导和感应耦合两种方式对电 源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合 是指谐波在传导的过程中,与此电源线平行敷设的导线又会产生电磁耦合,形成感应干扰。

(1)、在变频器交流输入侧安装交流电抗器,增大整流阻抗使整流重叠角增大,减小高次谐波电流。(2)、使所有的信号线很好 地绝缘,使其不可能漏电,这样,防止由于接触引入干扰。(3)、将不同种类的信号线隔离铺设(在不同一电缆槽中,划用隔板隔开),可 根据信号不同类型将其按抗噪声干扰的能力分成几等,单独走电缆或电缆槽。

变频器的各种接地在没汇到接地汇流排前,彼此 之间应保证绝缘,避免接地干扰。

调谐滤波电容器组,由数段电容器及调谐电抗器组合而成 ,每段形成串联共振回路,使共振频率低于最低之谐波频率。对含有5次以上谐波的系统,使用带6%电抗器的调谐式电容器组;对含有3次以 上谐波的系统,使用带14%电抗器的调谐式电容器组。在基本波频率(50Hz)下,调谐滤波电容器组呈现电容性,以提供无功功率;而在谐波频 率下,则呈现电感性,故与网络不会形成并联共振回路,亦即不会造成谐波放大。因此,调谐滤波电容器组,可安全补偿无功功率,亦可消 除低次谐波电流约30%。

当系统对抗干扰能力要求较高、或系统中谐波含量较复杂时,为减少变频器高次谐波的污染,可在电源输入端并联有源滤 波器。有源滤波器能有效虑除电网中2~50次谐波,反应时间小于1毫秒,是目前最有效的一种滤波技术。

3.额定电压(UR)。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直 流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/电极层之间存在 空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的 电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4.损耗角正切(tgδ)。在规定频率的正弦电压下,电 容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路 如附图所示。对于电子设备来说,要求RS愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。

6.使用寿命。电容器的使用寿命随温度的增加而减小。主 要原因是温度加速化学反应而使介质随时间退化。

自动无功补偿控制器

在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一 个电容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时, 阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不 允许的。因此,对加到晶闸管上的阳极电压上升率应有一定的限制。

直流稳压电路(开关电源)中的高速脉冲电路产生的射频电流;