高压无功补偿

高次谐波由于频率增大,电容器对高次谐波阻抗减小,因过电流而导致温度升高过热、甚至损坏电容器;电容器与系统中的感性负 荷构成的并联或串联电路,还有可能发生谐波共振,放大谐波电流或电压加重谐波的危害。经由电容器组电容和电网电感形成的并联谐振回 路,可被放大到10-15倍。

随着工业生产技术的逐步提高,变频器使用范围的逐步加大,变频 器高次谐波带来的确电磁干扰和污染问题也越来越突出,怎样处理好变频器系统的谐波干扰和污染问题也越为越突出,怎么样处理好变频器 系统的谐波干扰污染成了变频器进一步推广应用,特别是在对谐波污染要求高的场所的推广应用的关键。

为了使变频控制系统以及与之相连的仪表均能可靠运行并保证测量和控制精度,必须为变频器设立可靠地工作接地。它分 为电源地、信号地、模拟地(AG屏蔽地),在石化和其他防爆系统中还有本安地。

高压无功补偿

当系统对抗干扰能力要求较高、或系统中谐波含量较复杂时,为减少变频器高次谐波的污染,可在电源输入端并联有源滤 波器。有源滤波器能有效虑除电网中2~50次谐波,反应时间小于1毫秒,是目前最有效的一种滤波技术。

2.类别温度范围。电容器设计所确定的 能连续工作的环境温度范围。该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压 的最高环境温度)等。

6.使用寿命。电容器的使用寿命随温度的增加而减小。主 要原因是温度加速化学反应而使介质随时间退化。

为了限制电路电压上升率过大,确保晶闸管安全运行,常 在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感 ),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避 免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。

谐波电流是充电装置的主要副产品,任何电流变换器工作时都产生严重的谐波。充电装置发射谐波电流,最直接的危害就是导致电压畸变。 畸变的电压会导致其它用电设备工作异常。这就是电磁兼容问题,也就是,充电装置对其它电子设备产生了干扰,电压畸变越大,对同一个 电网上的电子设备影响越严重。影响电压畸变的因素如下:

随着科学技术的发展,工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重 越来越大。谐波给电力系统带来的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝 缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。 谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。因此, 对谐波的研究以及如何抑制、治理已成为一个具有重要意义的课题。

(一)谐波的定义:在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与 所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。电力谐波是频率为50HZ整倍数的正弦波电压或电流。发电厂或者发电 机发出的电压是频率为50HZ的正弦波波型,称为基波,50HZ称为基波频率。频率为50HZ整倍数的正弦波称为谐波。谐波用基波的倍数表示, 例如频率为150HZ的正弦波称为3次谐波,频率为250HZ的正弦波称为5次谐波,频率为350HZ的正弦波称为7次谐波,以此类推。谐波是正弦波 ,每个谐波都具有不同的频率,幅度与相角。

高压无功补偿

数据中心离不开电,没有电能数据中心的任何设备都无法运转,而且数据中心对电能的需求是巨大的,一个中型数据中心运行一天 就要消耗掉十几万度的电。很多人只关注数据中心的高能耗问题,想方设法减少数据中心电的使用量,但是都忽略了一个问题,就是电的质 量。

美国曾经做过这样的实验,得出一般低压配电线在14个月内在线发生超出原工作电压一倍以上的浪涌电 压次数可达到800次,这样每个月差不多57次,其中超过1000V的浪涌就有300多次,在我国由于电网质量本身就差,出现高浪涌的频率就更高 了。除了电网本身质量对数据中心供电造成了波动,数据中心供电波动也有相当一部分原因来自于雷电,我国也是一个雷电高发地区,数据 中心设备的电力线路上很容易遭受到直击雷和感应雷的冲击,这样加剧了电网的波动。当雷击中高压电力线路后,经过变压器耦合到低压测 ,进而入侵到数据中心的供电设备上。按照标准要求,一切数据中心里运行的设备必须接地,并具有防雷装置,避免雷击。表1列举了造成电 网波动的几大来源,这样的电压波动显然会对设备造成冲击,影响设备的正常运行。